The Droplet Size Distribution in Cumulus Clouds in the 0.1 µm

1979 ◽  
Vol 36 (6) ◽  
pp. 1053-1060 ◽  
2015 ◽  
Vol 72 (10) ◽  
pp. 4015-4028 ◽  
Author(s):  
Vincent E. Perrin ◽  
Harmen J. J. Jonker

Abstract This study investigates the droplet dynamics at the lateral cloud–environment interface in shallow cumulus clouds. A mixing layer is used to study a small part of the cloud edge using direct numerical simulation combined with a Lagrangian particle tracking and collision algorithm. The effect of evaporation, gravity, coalescence, and the initial droplet size distribution on the intensity of the mixing layer and the evolution of the droplet size distribution is studied. Mixing of the droplets with environmental air induces evaporative cooling, which results in a very characteristic subsiding shell. As a consequence, stronger horizontal velocity gradients are found in the mixing layer, which induces more mixing and evaporation. A broadening of the droplet size distribution is observed as a result of evaporation and coalescence. Gravity acting on the droplets allows droplets in cloudy filaments detrained from the cloud to sediment and remain longer in the unsaturated environment. While this effect of gravity did not have a significant impact in this case on the mean evolution of the mixing layer, it does contribute to the broadening of the droplet size distribution and thereby significantly increases the collision rate. Although more but smaller droplets result in more evaporative cooling, more droplets also increase small-scale fluctuations and the production of turbulent dissipation. For the smallest droplets considered with a radius of 10 μm, the authors found that, although a more pronounced buoyancy dip was present, the increase in dissipation rate actually led to a decrease in the turbulent intensity of the mixing layer. Extrapolation of the results to realistic clouds is discussed.


2018 ◽  
Vol 75 (1) ◽  
pp. 203-217 ◽  
Author(s):  
Sisi Chen ◽  
M. K. Yau ◽  
Peter Bartello

This paper aims to investigate and quantify the turbulence effect on droplet collision efficiency and explore the broadening mechanism of the droplet size distribution (DSD) in cumulus clouds. The sophisticated model employed in this study individually traces droplet motions affected by gravity, droplet disturbance flows, and turbulence in a Lagrangian frame. Direct numerical simulation (DNS) techniques are implemented to resolve the small-scale turbulence. Collision statistics for cloud droplets of radii between 5 and 25 μm at five different turbulence dissipation rates (20–500 cm2 s−3) are computed and compared with pure-gravity cases. The results show that the turbulence enhancement of collision efficiency highly depends on the r ratio (defined as the radius ratio of collected and collector droplets r/ R) but is less sensitive to the size of the collector droplet investigated in this study. Particularly, the enhancement is strongest among comparable-sized collisions, indicating that turbulence can significantly broaden the narrow DSD resulting from condensational growth. Finally, DNS experiments of droplet growth by collision–coalescence in turbulence are performed for the first time in the literature to further illustrate this hypothesis and to monitor the appearance of drizzle in the early rain-formation stage. By comparing the resulting DSDs at different turbulence intensities, it is found that broadening is most pronounced when turbulence is strongest and similar-sized collisions account for 21%–24% of total collisions in turbulent cases compared with only 9% in the gravitational case.


2011 ◽  
Vol 11 (4) ◽  
pp. 10557-10613 ◽  
Author(s):  
W. A. Cooper ◽  
S. G. Lasher-Trapp ◽  
A. M. Blyth

Abstract. Although rain has been observed to form in warm cumulus clouds within about twenty minutes, calculations that represent condensation and coalescence accurately in such clouds have had difficulty producing rainfall in such a short time except via processes involving giant cloud condensation nuclei (with diameters larger than 2 μm). This model-based study explores a different possible mechanism for accelerating the production of warm rain, one that depends on the variability in droplet trajectories arriving at a given location and time in a cumulus cloud. In the presence of entrainment such droplets experience different growth histories, and the result is broadening of the droplet size distribution. That broadening favours coalescence, leading to embryos that grow to raindrops. These calculations do lead to production of rain that is within the lower range of observations for clouds of Florida, USA, the location on which the input conditions were based. The process emphasized in this study, the formation of drizzle via collisions among droplets in the main peak of the droplet size distribution, complements the growth of precipitation on giant nuclei, which is also an important source of the first rain in the case studied. The results indicate that the mechanism developed here should be considered an important influence on the formation of rain in warm clouds.


2016 ◽  
Author(s):  
Adele L. Igel ◽  
Susan C van den Heever

Abstract. The condensation rates predicted by bin and bulk microphysics schemes in the same model framework are compared in a novel way using simulations of non-precipitating shallow cumulus clouds. The bulk scheme generally predicts lower condensation rates than does the bin scheme, even when the saturation ratio and the integrated diameter of the droplet size distribution are identical. Despite other fundamental disparities between the bin and bulk condensation parameterizations, the differences in condensation rates are predominantly explained by accounting for the shape of the cloud droplet size distributions simulated by the bin scheme. This shape is not well constrained by observations and thus it is difficult to know how to appropriately specify it in double-moment bulk microphysics schemes. However, this study shows that enhancing our observations may be important since the choice of distribution shape can have a large impact on condensation rates, changing them by 50 % or more in some cases.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


2014 ◽  
Vol 32 (14) ◽  
pp. 1655-1663 ◽  
Author(s):  
Leila Kavoshi ◽  
Mohammad S. Hatamipour ◽  
Amir Rahimi ◽  
Mehdi Momeni

Sign in / Sign up

Export Citation Format

Share Document